
Revenue Equivalence

Revenue Equivalence

Which auction should an auctioneer choose? To some extent,
it doesn’t matter...

Theorem (Revenue Equivalence Theorem)

Assume that each of n risk-neutral agents has an independent
private valuation for a single good at auction, drawn from a
common cumulative distribution F (v) that is strictly increasing
and atomless on [v, v̄]. Then any auction mechanism in which

the good will be allocated to the agent with the highest
valuation; and

any agent with valuation v has an expected utility of zero;

yields the same expected revenue, and hence results in any bidder
with valuation v making the same expected payment.
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Revenue Equivalence

Revenue Equivalence Proof

Proof.
Consider any mechanism (direct or indirect) for allocating the good. Let ui(vi)
be i’s expected utility given true valuation vi, assuming that all agents
including i follow their equilibrium strategies. Let Pi(vi) be i’s probability of
being awarded the good given (a) that his true type is vi; (b) that he follows
the equilibrium strategy for an agent with type vi; and (c) that all other agents
follow their equilibrium strategies.

ui(vi) = viPi(vi)− E[payment by type vi of player i] (1)

From the definition of equilibrium, for any other valuation v̂i that i could have,

ui(vi) ≥ ui(v̂i) + (vi − v̂i)Pi(v̂i). (2)

To understand Equation (2), observe that if i followed the equilibrium strategy
for a player with valuation v̂i rather than for a player with his (true) valuation
vi, i would make all the same payments and would win the good with the same
probability as an agent with valuation v̂i. However, whenever he wins the
good, i values it (vi − v̂i) more than an agent of type v̂i does. The inequality
must hold because in equilibrium this deviation must be unprofitable.
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Revenue Equivalence Proof

Proof (continued).

Consider v̂i = vi + dvi, by substituting this expression into Equation (2):

ui(vi) ≥ ui(vi + dvi) + dviPi(vi + dvi). (3)

Likewise, considering the possibility that i’s true type could be vi + dvi,

ui(vi + dvi) ≥ ui(vi) + dviPi(vi). (4)

Combining Equations (4) and (5), we have

Pi(vi + dvi) ≥
ui(vi + dvi)− ui(vi)

dvi
≥ Pi(vi). (5)

Taking the limit as dvi → 0 gives dui
dvi

= Pi(vi). Integrating up,

ui(vi) = ui(v) +

∫ vi

x=v

Pi(x)dx. (6)
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Revenue Equivalence Proof

Proof (continued).

Now consider any two efficient auction mechanisms in which the expected
payment of an agent with valuation v is zero. A bidder with valuation v will
never win (since the distribution is atomless), so his expected utility ui(v) = 0.
Because both mechanisms are efficient, every agent i always has the same
Pi(vi) (his probability of winning given his type vi) under the two mechanisms.
Since the right-hand side of Equation (6) involves only Pi(vi) and ui(v), each
agent i must therefore have the same expected utility ui in both mechanisms.
From Equation (1), this means that a player of any given type vi must make
the same expected payment in both mechanisms. Thus, i’s ex ante expected
payment is also the same in both mechanisms. Since this is true for all i, the
auctioneer’s expected revenue is also the same in both mechanisms.
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Revenue Equivalence

First and Second-Price Auctions

The kth order statistic of a distribution: the expected value of
the kth-largest of n draws.

For n IID draws from [0, vmax], the kth order statistic is

n + 1− k

n + 1
vmax.

Thus in a second-price auction, the seller’s expected revenue is

n− 1

n + 1
vmax.

First and second-price auctions satisfy the requirements of the
revenue equivalence theorem

every symmetric game has a symmetric equilibrium
in a symmetric equilibrium of this auction game, higher bid ⇔
higher valuation

Kevin Leyton-Brown Revenue Equivalence, Slide 3



Revenue Equivalence

First and Second-Price Auctions

The kth order statistic of a distribution: the expected value of
the kth-largest of n draws.

For n IID draws from [0, vmax], the kth order statistic is

n + 1− k

n + 1
vmax.

Thus in a second-price auction, the seller’s expected revenue is

n− 1

n + 1
vmax.

First and second-price auctions satisfy the requirements of the
revenue equivalence theorem

every symmetric game has a symmetric equilibrium
in a symmetric equilibrium of this auction game, higher bid ⇔
higher valuation

Kevin Leyton-Brown Revenue Equivalence, Slide 3



Revenue Equivalence

First and Second-Price Auctions

The kth order statistic of a distribution: the expected value of
the kth-largest of n draws.

For n IID draws from [0, vmax], the kth order statistic is

n + 1− k

n + 1
vmax.

Thus in a second-price auction, the seller’s expected revenue is

n− 1

n + 1
vmax.

First and second-price auctions satisfy the requirements of the
revenue equivalence theorem

every symmetric game has a symmetric equilibrium
in a symmetric equilibrium of this auction game, higher bid ⇔
higher valuation

Kevin Leyton-Brown Revenue Equivalence, Slide 3



Revenue Equivalence

Applying Revenue Equivalence

Thus, a bidder in a FPA must bid his expected payment
conditional on being the winner of a second-price auction

this conditioning will be correct if he does win the FPA;
otherwise, his bid doesn’t matter anyway
if vi is the high value, there are then n− 1 other values drawn
from the uniform distribution on [0, vi]
thus, the expected value of the second-highest bid is the
first-order statistic of n− 1 draws from [0, vi]:

n + 1− k

n + 1
vmax =

(n− 1) + 1− (1)

(n− 1) + 1
(vi) =

n− 1

n
vi

This provides a basis for our earlier claim about n-bidder
first-price auctions.

However, we’d still have to check that this is an equilibrium
The revenue equivalence theorem doesn’t say that every
revenue-equivalent strategy profile is an equilibrium!
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