Optimal Auctions

Optimal Auctions

@ So far we have only considered efficient auctions.
@ What about maximizing the seller's revenue?
e she may be willing to risk failing to sell the good even when
there is an interested buyer
e she may be willing sometimes to sell to a buyer who didn’t
make the highest bid
@ Mechanisms which are designed to maximize the seller's
expected revenue are known as optimal auctions.
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Optimal Auctions

Optimal auctions setting

@ independent private valuations

o risk-neutral bidders
@ each bidder i's valuation drawn from some strictly increasing
cumulative density function F;(v) (PDF f;(v))
o we allow F; # Fj: asymmetric auctions

@ the seller knows each F;
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Optimal Auctions

Designing optimal auctions

Definition (virtual valuation)

Bidder i's virtual valuation is ¥;(v;) = v; — %;(SZ)

Definition (bidder-specific reserve price)

Bidder ¢'s bidder-specific reserve price 7 is the value for which

wZ(T’:) = 0.
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Optimal Auctions

Designing optimal auctions

Definition (virtual valuation)

Bidder 4s virtual valuation is 4;(v;) = v; — 17

Definition (bidder-specific reserve price)

Bidder ¢'s bidder-specific reserve price 7 is the value for which

1/)1(7“:) = 0.

| A\

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = argmax; 1;(0;), as long as v; > r}. If the good is
sold, the winning agent i is charged the smallest valuation that he
could have declared while still remaining the winner:

inf{vf : i(vf) > 0 and Vj # i, i(v}) > 1;(0;)}.




Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # i, 1;(v}) > ¥;(9;)}-

e Is this VCG?
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # i, 1;(v}) > ¥;(9;)}-

e Is this VCG?

e No, it's not efficient.
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:
@ winning agent: i = argmax; 1;(?;), as long as v; > r}.

@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # i, 1;(v}) > ¥;(9;)}-

@ Is this VCG?
e No, it's not efficient.
@ How should bidders bid?
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:
@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # i, 1;(v}) > ¥;(9;)}-

@ Is this VCG?
e No, it's not efficient.
@ How should bidders bid?
e it's a second-price auction with a reserve price, held in virtual
valuation space.
e neither the reserve prices nor the virtual valuation
transformation depends on the agent's declaration
e thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # ¢, ;(v}) > ¥;(05)}

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # ¢, ;(v}) > ¥;(05)}

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
e a second-price auction with reserve price r* satisfying
L-Fi(r™) _

*
L A )
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared
while still remaining the winner,

inf{v} : ¥;(v}) > 0 and Vj # ¢, ;(v}) > ¥;(05)}

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?
e a second-price auction with reserve price r* satisfying
1-Fi(r) _
fi(rx)
@ What happens in the general case?

r* —

Kevin Leyton-Brown Optimal Auctions, Slide 5



Optimal Auctions

Analyzing optimal auctions

Optimal Auction:
@ winning agent: i = argmax; 1;(?;), as long as v; > r}.
@ ¢ is charged the smallest valuation that he could have declared

while still remaining the winner,
inf{v; : ¥i(vy) > 0 and Vj # i, ¥i(v]) > ;(05)}.

@ What happens in the special case where all agents’ valuations
are drawn from the same distribution?

e a second-price auction with reserve price r* satisfying

L-Fi(r") _

fi(rx)

@ What happens in the general case?

e the virtual valuations also increase weak bidders’ bids, making
them more competitive.

e low bidders can win, paying less
e however, bidders with higher expected valuations must bid

more aggressively
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