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So far we have only considered efficient auctions.

What about maximizing the seller’s revenue?

she may be willing to risk failing to sell the good even when
there is an interested buyer
she may be willing sometimes to sell to a buyer who didn’t
make the highest bid

Mechanisms which are designed to maximize the seller’s
expected revenue are known as optimal auctions.
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Optimal Auctions

Optimal auctions setting

independent private valuations

risk-neutral bidders

each bidder i’s valuation drawn from some strictly increasing
cumulative density function Fi(v) (PDF fi(v))

we allow Fi 6= Fj : asymmetric auctions

the seller knows each Fi
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Designing optimal auctions

Definition (virtual valuation)

Bidder i’s virtual valuation is ψi(vi) = vi − 1−Fi(vi)
fi(vi)

.

Definition (bidder-specific reserve price)

Bidder i’s bidder-specific reserve price r∗i is the value for which
ψi(r

∗
i ) = 0.

Theorem

The optimal (single-good) auction is a sealed-bid auction in which
every agent is asked to declare his valuation. The good is sold to
the agent i = argmaxi ψi(v̂i), as long as vi > r∗i . If the good is
sold, the winning agent i is charged the smallest valuation that he
could have declared while still remaining the winner:
inf{v∗i : ψi(v

∗
i ) ≥ 0 and ∀j 6= i, ψi(v

∗
i ) ≥ ψj(v̂j)}.
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

winning agent: i = argmaxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v

∗
i ) ≥ 0 and ∀j 6= i, ψi(v

∗
i ) ≥ ψj(v̂j)}.

Is this VCG?

No, it’s not efficient.

How should bidders bid?

it’s a second-price auction with a reserve price, held in virtual
valuation space.
neither the reserve prices nor the virtual valuation
transformation depends on the agent’s declaration
thus the proof that a second-price auction is dominant-strategy
truthful applies here as well.
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Optimal Auctions

Analyzing optimal auctions

Optimal Auction:

winning agent: i = argmaxi ψi(v̂i), as long as vi > r∗i .

i is charged the smallest valuation that he could have declared
while still remaining the winner,
inf{v∗i : ψi(v

∗
i ) ≥ 0 and ∀j 6= i, ψi(v

∗
i ) ≥ ψj(v̂j)}.

What happens in the special case where all agents’ valuations
are drawn from the same distribution?

a second-price auction with reserve price r∗ satisfying

r∗ − 1−Fi(r
∗)

fi(r∗)
= 0.

What happens in the general case?
the virtual valuations also increase weak bidders’ bids, making
them more competitive.
low bidders can win, paying less
however, bidders with higher expected valuations must bid
more aggressively
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