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Figure 5.9 The centipede game

place. In other words, you have reached a state to which your analysis has given a
probability of zero. How should you amend your beliefs and course of action based
on this measure-zero event? It turns out this seemingly small inconvenience actually
raises a fundamental problem in game theory. We will not develop the subject further
here, but let us only mention that there exist different accounts of this situation, and
they depend on the probabilistic assumptions made, on what is common knowledge (in
particular, whether there is common knowledge of rationality), and on exactly how one
revises one’s beliefs in the face of measure zero events. Thelast question is intimately
related to the subject of belief revision discussed in Chapter 2.

5.2 Imperfect-information extensive-form games

Up to this point, in our discussion of extensive-form games we have allowed players to
specify the action that they would take at every choice node of the game. This implies
that players know the node they are in, and—recalling that in such games we equate
nodes with the histories that led to them—all the prior choices, including those of other
agents. For this reason we have called theseperfect-information games.

We might not always want to make such a strong assumption about our players and
our environment. In many situations we may want to model agents needing to act with
partial or no knowledge of the actions taken by others, or even agents with limited
memory of their own past actions. The sequencing of choices allows us to represent
such ignorance to a limited degree; an “earlier” choice might be interpreted as a choice
made without knowing the “later” choices. However, we cannot represent two choices
made in the same play of the game in mutual ignorance of each other. The normal
form, of course, is optimized for such modelling.

5.2.1 Definition

Imperfect-informationgames in extensive form address this limitation. An imperfect-
information game is an extensive-form game in which each player’s choice nodes are
partitioned intoinformation sets; intuitively, if two choice nodes are in the same in-information sets
formation set then the agent cannot distinguish between them. From the technical
point of view, imperfect-information games are obtained byoverlaying a partition
structure, as defined in Chapter 1 in connection with models of knowledge, over a
perfect-information game.

Definition 5.2.1 An imperfect-information game(in extensive form) is a tupleimperfect-
information
game

(N,A,H,Z, χ, ρ, σ, u, I), where
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Play this as a fun game...
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Computing Subgame Perfect Equilibria

Idea: Identify the equilibria in the bottom-most trees, and adopt
these as one moves up the tree
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good news: not only are we guaranteed to find a subgame-perfect equilibrium (rather
than possibly finding a Nash equilibrium that involves non-credible threats) but also
this procedure is computationally simple. In particular, it can be implemented as a
single depth-first traversal of the game tree, and thus requires time linear in the size
of the game representation. Recall in contrast that the bestknown methods for finding
Nash equilibria of general games require time exponential in the size of the normal
form; remember as well that the induced normal form of an extensive-form game is
exponentially larger than the original representation.

function BACKWARD INDUCTION (nodeh) returns u(h)
if h ∈ Z then

return u(h) // h is a terminal node

best util← −∞
forall a ∈ χ(h) do

util at child←BACKWARD INDUCTION(σ(h, a))
if util at childρ(h) > best utilρ(h) then

best util← util at child

return best util

Figure 5.6: Procedure for finding the value of a sample (subgame-perfect) Nash equi-
librium of a perfect-information extensive-form game.

The algorithm BACKWARD INDUCTION is described in Figure 5.6. The variable
util at child is a vector denoting the utility for each player at the child node;util at childρ(h)
denotes the element of this vector corresponding to the utility for player ρ(h) (the
player who gets to move at nodeh). Similarly best util is a vector giving utilities for
each player.

Observe that this procedure does not return an equilibrium strategy for each of the
n players, but rather describes how to label each node with a vector ofn real numbers.
This labeling can be seen as an extension of the game’s utility function to the non-
terminal nodesH . The players’ equilibrium strategies follow straightforwardly from
this extended utility function: every time a given playeri has the opportunity to act
at a given nodeh ∈ H (that is,ρ(h) = i), that player will choose an actionai ∈
χ(h) that solvesargmaxai∈χ(h) ui(σ(ai, h)). These strategies can also be returned by
BACKWARD INDUCTION given some extra bookkeeping.

In general in this booklet we do not address computational issues, so this example
could be misleading without additional explanation. Whilethe procedure demonstrates
that in principle a sample SPE is effectively computable, inpractice the game trees
are never enumerated in advance and available for backward induction. For example,
the extensive-form representation of chess has around10150 nodes, which is vastly
too large to represent explicitly. For such games it is more common to discuss the
size of the game tree in terms of the average branching factorb (the average number
of actions which are possible at each node) and a maximum depth m (the maximum
number of sequential actions). A procedure which requires time linear in the size of
the representation thus expandsO(bm) nodes. Nevertheless, we can unfortunately do
no better than this on arbitrary perfect-information games.
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util at child is a vector denoting the utility for each player

the procedure doesn’t return an equilibrium strategy, but rather
labels each node with a vector of real numbers.

This labeling can be seen as an extension of the game’s utility
function to the non-terminal nodes
The equilibrium strategies: take the best action at each node.
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For zero-sum games, BackwardInduction has another name:
the minimax algorithm.

Here it’s enough to store one number per node.
It’s possible to speed things up by pruning nodes that will
never be reached in play: “alpha-beta pruning”.
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probability of zero. How should you amend your beliefs and course of action based
on this measure-zero event? It turns out this seemingly small inconvenience actually
raises a fundamental problem in game theory. We will not develop the subject further
here, but let us only mention that there exist different accounts of this situation, and
they depend on the probabilistic assumptions made, on what is common knowledge (in
particular, whether there is common knowledge of rationality), and on exactly how one
revises one’s beliefs in the face of measure zero events. Thelast question is intimately
related to the subject of belief revision discussed in Chapter 2.
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partitioned intoinformation sets; intuitively, if two choice nodes are in the same in-information sets
formation set then the agent cannot distinguish between them. From the technical
point of view, imperfect-information games are obtained byoverlaying a partition
structure, as defined in Chapter 1 in connection with models of knowledge, over a
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(N,A,H,Z, χ, ρ, σ, u, I), where
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What happens when we use this procedure on Centipede?
In the only equilibrium, player 1 goes down in the first move.
However, this outcome is Pareto-dominated by all but one
other outcome.

Two considerations:
practical: human subjects don’t go down right away
theoretical: what should you do as player 2 if player 1 doesn’t
go down?

SPE analysis says to go down. However, that same analysis
says that P1 would already have gone down. How do you
update your beliefs upon observation of a measure zero event?
but if player 1 knows that you’ll do something else, it is
rational for him not to go down anymore... a paradox
there’s a whole literature on this question
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