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Overview

The partition model of knowledge
Introduction to modal logic
The S5 axioms
Common knowledge
Applications to robotics
Knowledge and belief
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The Muddy Children Puzzle

n children meet their father after playing in the mud. The father
notices that k of the children have mud on their foreheads. 
Each child sees everybody else’s foreheads, but not his own.
The father says: “At least one of you has mud on his forehead.”
The father then says: “Do any of you know that you have mud 
on your forehead? If you do, raise your hand now.”
No one raises his hand.
The father repeats the question, and again no one moves.
After exactly k repetitions, all children with muddy foreheads 
raise their hands simultaneously.
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Muddy Children (cont.)

Suppose k = 1
The muddy child knows 
the others are clean
When the father says at 
least one is muddy, he 
concludes that it’s him
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Muddy Children (cont.)

Suppose k = 2
Suppose you are muddy
After the first announcement, you see 
another muddy child, so you think 
perhaps he’s the only muddy one.
But you note that this child did not 
raise his hand, and you realise you are 
also muddy.
So you raise your hand in the next 
round, and so does the other muddy 
child



Reasoning about Knowledge6

The Partition Model of Knowledge

An n-agent a partition model over language Σ
is A=(W, π, I1, …, In) where
– W is a set of possible worlds
– π : Σ → 2W is an interpretation function that 

determines which sentences are true in which 
worlds

– Each Ii is a partition of W for agent i
Remember: a partition chops a set into disjoint sets
Ii(w) includes all the worlds in the partition of world w
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Partition Model (cont.)

What?
– Each Ii is a partition of W for agent i

Remember: a partition chops a set into disjoint sets
Ii(w) includes all the worlds in the partition of world w

Intuition:
– if the actual world is w, then Ii(w) is the set of 

worlds that agent i cannot distinguish from w
– i.e. all worlds in Ii(w) all possible as far as i knows
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Partition Model (cont.)

Suppose there are two propositions p and q
There are 4 possible worlds:

– w1: p  ∧ q
– w2: p  ∧ ¬ q
– w3: ¬ p  ∧ q
– w4: ¬ p  ∧ ¬ q
Suppose the real world is w1, and that in w1 agent i
cannot distinguish between w1 and w2

We say that Ii(w1)={w1, w2}
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The Knowledge Operator

Let Kiϕ mean that “agent i knows that ϕ”
Let A=(W, π, I1, …, In) be a partition model 
over language Σ and let w ∈ W
We define logical entailment |= as follows:
– For ϕ ∈ Σ we say (A,w |= ϕ) if and only if w ∈ π(ϕ)
– We say A,w |= Kiϕ if and only if ∀w’, 

if w’∈Ii(w), then A,w |= ϕ
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The Knowledge Operator (cont.)

What?
– We say A,w |= Kiϕ if and only if ∀w’, 

if w’∈Ii(w), then A,w |= ϕ

Intuition: in partition model A, if the actual 
world is w, agent i knows ϕ if and only if ϕ is 
true in all worlds he cannot distinguish from 
w
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Muddy Children Revisited

n children meet their father after playing in 
the mud. The father notices that k of the 
children have mud on their foreheads. 
Each child sees everybody else’s foreheads, 
but not his own.
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Muddy Children Revisited (cont.)

Suppose n = k = 2 (two children, both muddy)
Possible worlds:

– w1: muddy1  ∧ muddy2     (actual world)
– w2: muddy1  ∧ ¬ muddy2
– w3: ¬ muddy1  ∧ muddy2
– w4: ¬ muddy1  ∧ ¬ muddy2
At the start, no one sees or hears anything, so all 
worlds are possible for each child
After seeing each other, each child can tell apart 
worlds in which the other child’s state is different
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Muddy Children Revisited (cont.)

Bold oval = actual world
Solid boxes = equivalence classes in I1
Dotted boxes = equivalence classes in I2

Note: in w1 we have:
K1 muddy2
K2 muddy1
K1 ¬ K2 muddy2
…
But we don’t have:
K1 muddy1
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Muddy Children Revisited (cont.)

The father says: “At least one of you has 
mud on his forehead.”
– This eliminates the world:

w4: ¬ muddy1  ∧ ¬ muddy2
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Muddy Children Revisited (cont.)

Bold oval = actual world
Solid boxes = equivalence classes in I1
Dotted boxes = equivalence classes in I2
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Muddy Children Revisited (cont.)

The father then says: “Do any of you know 
that you have mud on your forehead? If you 
do, raise your hand now.”
– Here, no one raises his hand. 
– But by observing that the other did not raise his 

hand (i.e. does not know whether he’s muddy), 
each child concludes the true world state.

– So, at the second announcement, they both raise 
their hands.
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Muddy Children Revisited (cont.)

Bold oval = actual world
Solid boxes = equivalence classes in I1
Dotted boxes = equivalence classes in I2

Note: in w1 we have:
K1 muddy1
K2 muddy2
K1 K2 muddy2
…
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Modal Logic

Can be built on top of any language
Two modal operators:
– �ϕ reads “ϕ is necessarily true”
– ◊ϕ reads “ϕ is possibly true”

Equivalence:
– ◊ϕ ≡ ¬�¬ϕ
– �ϕ ≡ ¬◊¬ϕ

So we can use only one of the two operators



Reasoning about Knowledge19

Modal Logic: Syntax

Let P be a set of propositional symbols
We define modal language L as follows:
If p ∈ P and ϕ, ψ ∈ L then:

– p ∈ L
– ¬ϕ ∈ L
– ϕ ∧ ψ ∈ L
– �ϕ ∈ L

Remember that ◊ϕ ≡ ¬�¬ϕ, and ϕ ∨ψ ≡ ¬ (¬ϕ ∧¬ψ)
and ϕ →ψ ≡ ¬ϕ ∨ ψ
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Modal Logic: Semantics

Semantics is given in terms of 
Kripke Structures (also known 
as possible worlds structures)
Due to American logician Saul 
Kripke, City University of NY
A Kripke Structure is (W, R)

– W is a set of possible worlds
– R : W × W is an binary 

accessibility relation over W
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Modal Logic: Semantics (cont.)

A Kripke model is a pair M,w where
– M = (W, R) is a Kripke structure and 
– w ∈ W is a world

The entailment relation is defined as follows:
– M,w |= ϕ if ϕ is true in w
– M,w |= ϕ ∧ ψ if M,w |= ϕ and M,w |= ψ
– M,w |= ¬ϕ if and only if we do not have M,w |= ϕ
– M,w |= �ϕ if and only if ∀w’ ∈ W such that R(w,w’) 

we have M,w’ |= ϕ
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Modal Logic: Semantics (cont.)

As in classical logic:
– Any formula ϕ is valid (written |= ϕ) if and only if ϕ

is true in all Kripke models
E.g. �ϕ ∨ ¬�ϕ is valid

– Any formula ϕ is satisfiable if and only if ϕ is true 
in some Kripke models

We write M, |= ϕ if ϕ is true in all worlds of M
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Modal Logic: Axiomatics

Is there a set of minimal axioms that allows 
us to derive precisely all the valid sentences?
Some well-known axioms:
– Axiom(Classical) All propositional tautologies 

are valid
– Axiom (K) (�ϕ ∧ �(ϕ →ψ)) → �ψ is valid
– Rule (Modus Ponens) if ϕ and ϕ →ψ are valid, 

infer that ψ is valid
– Rule (Necessitation) if ϕ is valid, infer that �ϕ is 

valid
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Modal Logic: Axiomatics

Refresher: remember that 
– A set of inference rules (i.e. an inference 

procedure) is sound if everything it concludes is 
true

– A set of inference rules (i.e. an inference 
procedure) is complete if it can find all true 
sentences

Theorem: System K is sound and complete 
for the class of all Kripke models.
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Multiple Modal Operators

We can define a modal logic with n modal 
operators �1, …, �n as follows:
– We would have a single set of worlds W
– n accessibility relations R1, …, Rn

– Semantics of each �i is defined in terms of Ri



Reasoning about Knowledge26

Axiomatic theory of the partition model

Objective: Come up with a sound and 
complete axiom system for the partition 
model of knowledge.
Note: This corresponds to a more restricted 
set of models than the set of all Kripke
models.
In other words, we will need more axioms.
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Axiomatic theory of the partition model

The modal operator �i becomes Ki

Worlds accessible from w according to Ri are those 
indistinguishable to agent i from world w
Ki means “agent i knows that”
Start with the simple axioms:

– (Classical) All propositional tautologies are valid
– (Modus Ponens) if ϕ and ϕ →ψ are valid, infer that ψ is 

valid



Reasoning about Knowledge28

Axiomatic theory of the partition model
(More Axioms)

(K) From (Kiϕ ∧ Ki(ϕ →ψ)) infer Kiψ
– Means that the agent knows all the consequences 

of his knowledge
– This is also known as logical omniscience

(Necessitation) From ϕ, infer that Kiϕ
– Means that the agent knows all propositional 

tautologies
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Axiomatic theory of the partition model 
(More Axioms)

Axiom (D) ¬ Ki (ϕ ∧ ¬ϕ)
– This is called the axiom of consistency

Axiom (T) (Ki ϕ) → ϕ
– This is called the veridity axiom
– Means that if an agent cannot know something 

that is not true.
– Corresponds to assuming that Ri is reflexive
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Axiomatic theory of the partition model 
(More Axioms)

Axiom (4) Ki ϕ → Ki Ki ϕ
– Called the positive introspection axiom
– Corresponds to assuming that Ri is transitive

Axiom (5) ¬Ki ϕ → Ki ¬Ki ϕ
– Called the negative introspection axiom
– Corresponds to assuming that Ri is Euclidian

Refresher: Binary relation R over domain Y is 
Euclidian if and only if ∀y, y’, y’’ ∈ Y, if (y,y’) ∈ R and 
(y,y’’) ∈ R then (y’,y’’) ∈ R
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Axiomatic theory of the partition model 
(Overview of Axioms)

Proposition: a binary relation is an equivalence relation 
if and only if it is reflexive, transitive and Euclidean
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Axiomatic theory of the partition model 
(back to the partition model)

System KT45 exactly captures the properties 
of knowledge defined in the partition model
System KT45 is also known as S5
S5 is sound and complete for the class of all 
partition models
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The Coordinated Attack Problem
(aka, Two Generals’ or Warring Generals Problem)

Two generals standing on opposite hilltops, trying to 
coordinate an attack on a third general in a valley 
between them.
Communication is via messengers who must travel 
across enemy lines (possibly get caught).
If a general attacks on his own, he loses.
If both attack simultaneously, they win.
What protocol can ensure simultaneous attack?
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The Coordinated Attack Problem
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The Coordinated Attack Problem
(A Naive Protocols)

Let us call the generals:
– S (sender)
– R (receiver)

Protocol for general S:
– Send an “attack” message to R
– Keeps sending until acknowledgement is received

Protocol for general R:
– Do nothing until he receives a message “attack” from S
– If you receive a message, send an acknowledgement to S
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The Coordinated Attack Problem
(States)

State of general S:
– A pair (msgS, ackS) where msg ∈ {0,1}, ack ∈ {0,1}
– msgS = 1 means a message “attack” was sent
– ackS = 1 means an acknowledgement was received

State of general R:
– A pair (msgR, ackR) where msg ∈ {0,1}, ack ∈ {0,1}
– msgR = 1 means a message “attack” was received
– ackR = 1 means an acknowledgement was sent

Global state: <(msgS, ackS),(msgR, ackR)>
4 possible local states per general &16 global states
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The Coordinated Attack Problem
(Possible Worlds)

Initial global state: <(0,0),(0,0)>
State changes as a result of:

– Protocol events
– Nondeterministic effects of nature

Change in states captured in a history
Example:

– S sends a message to R, R receives it and sends an 
acknowledges, which is then received by S

– <(0,0),(0,0)>, <(1,0),(1,0)>, <(1,1),(1,1)>

In our model: possible world = possible history
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The Coordinated Attack Problem
(Indistinguishable Worlds)

Defining the accessibility relation Ri:
– Two histories are indistinguishable to agent i if their final 

global states have identical local states for agent i

Example: world 
<(0,0),(0,0)>, <(1,0),(1,0)>, <(1,0),(1,1)>

is indistinguishable to general S from this world:
<(0,0),(0,0)>, <(1,0),(0,0)>, <(1,0),(0,0)>
– In words: S sends a message to R, but does not get an 

acknowledgement. This could be because R never received 
the message, or because he did but his acknowledgement 
did not make reach S
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The Coordinated Attack Problem
(What do generals know?)

Suppose the actual world is:
– <(0,0),(0,0)>, <(1,0),(1,0)>, <(1,1),(1,1)>

In this world, the following hold:
– KSattack
– KRattack
– KSKRattack

Unfortunately, this also holds:
– ¬KRKSKRattack

R does not known that S knows that R knows that S 
intends to attack. Why? Because, from R’s 
perspective, the message could have been lost
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The Coordinated Attack Problem
(What do generals know?)

Possible solution: 
– S acknowledges R’s acknowledgement

Then we have:
– KRKSKRattack

Unfortunately, we also have:
– ¬KSKRKSKRattack

Is there a way out of this?
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The “Everyone Knows” Operator

EGϕ denotes that everyone in group G knows ϕ
Semantics of “everyone knows”:
Let:

– M be a Kripke structure
– w be a possible world in M
– G be a group of agents
– ϕ be a sentence of modal logic

M,w |= EGϕ if and only if ∀i ∈G we have M,w |= Kiϕ
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The “Common Knowledge” Operator

When we say something is common 
knowledge, we mean that any fool knows it!
If any fool knows ϕ, we can assume that 
everyone knows it, and everyone knows that 
everyone knows that everyone knows it, and 
so on (infinitely).
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The “Common Knowledge” Operator
(formal definition)

CGϕ denotes that ϕ is common knowledge among G
Semantics of “common knowledge”:
Let:

– M be a Kripke structure
– w be a possible world in M
– G be a group of agents
– ϕ be a sentence of modal logic

M,w |= CGϕ if and only if M,w |= EG(ϕ ∧ Ciϕ)

Notice the recursion in the definition.
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The “Common Knowledge” Operator
(Axiomatization)

All we need is S5 plus the following:
Axiom (A3) EGϕ ↔ (K1ϕ ∧ … ∧ Knϕ) 
– given G={1,…,n}

Axiom (A4) CGϕ → EG(ϕ ∧ Ciϕ)
Rule (R3) From ϕ → EG(ψ ∧ ϕ) 

infer ϕ → CGψ
– This is called the induction rule.
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Back to Coordinated Attack

Whenever any communication protocol 
guarantees a coordinated attack in a 
particular history, in that history we must 
have common knowledge between the two 
generals that an attack is about to happen.
No finite exchange of acknowledgements will 
ever lead to such common knowledge.
There is no communication  protocol that 
solves the Coordinated Attack problem.
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Reading

Logics for Knowledge and Belief. Chapter 13
of Multiagent Systems: Algorithmic, 
Game-Theoretic, and Logical 
Foundations. Y. Shoham, K. Leyton-Brown. 
Cambridge University Press, 2009. 


