
ON USING A COMPUTER TO SOLVE
GAME THEORY PROBLEMS: GAME 01

DOMAIN PRUNING BY REVISIONS
Bruce R. Barkstrom

15 Josie Lane
Asheville, NC 28804

1. INTRODUCTION

This text is devoted to implementing multiagent simulations of various sorts for computa-
tional economics and related disciplines. However, before we can apply this approach, we need
a deeper introduction to some known algorithms in multiagent systems. Accordingly, we will
follow many of the cases in Shoham and Leyton-Brown [2009], taking the unadorned algorithm
description in their text and converting it into working computer code. In a sense, then, this text
consists of a set of exercises based on that reference.

When we implement the solution to these exercises, we will use Ada95 or Ada2005. This
language is a sensible choice because the agent-to-agent interactions are already supported by the
Ada rendezvous mechanism. The agents in these exercises will be Ada tasks, which are roughly
equivalent to threads of computation in modern computer architectures. Indeed, Ada tasks are
usually implemented as threads. Thus, this kind of simulation fits well with recent developments
in multi-core CPU architectures. Ada also provides an operating-system-independent method
of writing code. This independence means that a developer can transfer source code from one
computer to another without modifying it and have the code operate in the same way after it is
compiled and linked, assuming that each system has an Ada compiler.

We also use a Unified Modeling Language (UML) design tool to conceptualize and then
design each exercise’s implementation. In these designs, each agent becomes an object. To initialize
each agent or to record the history of the interactions between the agents, we also need to introduce
a “Referee” and a “Scorekeeper.” The whole game concept becomes very similar to designing a
community of interacting people who can do things (some, of course, more interesting than others).

In the sections that follow, we also follow a fairly standard design process:

1. Conceptualize the nature of the game, discovering likely agents

2. Write out the use cases that describe the most important phases of the design

3. Derive the detailed data structures and algorithms for each agent, including translation of
the algorithm sketches in the sources

4. Create the Ada code

5. Test the code for proper results

2. GAME 01: DOMAIN-PRUNING BY REVISION

Shoham and Leyton-Brown’s first example [pp. 3-5] identifies a system with n “variables,”
X = X1, . . . , Xn. Figures 1.3 and 1.4 in their text show cases where n = 3. The term “variable”
seems rather a bit of a misnomer. “Agent” would probably better describe the role of these entities
in the algorithm. Oddly, the book’s index does not include the term “agent,” (although it does
include “agent-based simulation”). The closest one might come to a definition of the term “agent”
in the book’s context is connected with a highly restricted meaning associated with “speech acts.”

It might be helpful to think of this algorithm as involving automated radio transmitters
and receivers (transceivers) to allocate three transmission frequencies amongst three pieces of

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 6 Game 01: Domain Pruning by Revision Section 3

equipment bought by a town government. The town has a choice of three different models. The
first is quite expensive. It comes with three different transmitting frequencies. A second model
is somewhat less expensive, having only two frequencies. The third is cheapest, having only one
frequency. The manufacturer has only three frequencies available. However, if a tranceiver has
more than one oscillator, it can select which one it will use to transmit. If two tranceivers attempt to
broadcast on the same frequency, they interfere with each other. In this case, no communication is
possible. Each model also comes with a modest computer capability that can send a signal to other
pieces of equipment and discover the frequencies at which the other can transmit. Thus, the point
of the algorithm is to find a transmission frequency for each of the three tranceivers such that all
three can transmit while receiving signals from the other two.

3. DISCOVERING LIKELY AGENTS AND SOME OF THEIR PROPERTIES

In accord with this discussion, we assume that an “agent” in our simulation games is
programmable as an Ada task. The Ada Reference Manual defines tasks in the following way
[Section 9]:

“The execution of an Ada program consists of the execution of one or more tasks.
Each task represents a separate thread of control that proceeds independently and
concurrently between the points where it interacts with other tasks. The various
forms of task interaction are described in this section, and include:

• the activation and termination of a task;

• a call on a protected subprogram of a protected object, providing exclusive
read-write access, or concurrent read-only access to shared data;

• a call on an entry, either of another task, allowing for synchronous commun-
ication with that task, or of a protected object, allowing for asynchronous
communication with one or more other tasks using that same protected
object;

• a timed operation, including a simple delay statement, a timed entry call or
accept, or a timed asynchronous select statement (see next item);

• an asynchronous transfer of control as part of an asynchronous select
statement, where a task stops what it is doing and begins execution at a
different point in response to the completion of an entry call or the expiration
of a delay;

• an abort statement, allowing one task to cause the termination of another task.

In addition, tasks can communicate indirectly by reading and updating (unpro-
tected) shared variables, presuming the access is properly synchronized through
some other kind of task interaction.

The properties of a task are defined by a corresponding task declaration and
task body, which together define a program unit called a task unit.

Over time, tasks proceed through various states. A task is initially inactive; upon
activation, and prior to its termination it is either blocked (as part of some task
interaction) or ready to run. While ready, a task competes for the available execution
resources that it requires to run.”

3.1 Agents

So, what agents do we need in order to create a simulation of the first Domain-pruning
algorithm? Clearly, we’re going to need Players – three to be exact. The text description doesn’t
identify who keeps score and who decides the game is over. It would be interesting to see if each
Player could decide that on its own. However, it isn’t easy to see how that would be done. Thus,

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Section 4 Game 01: Domain Pruning by Revision p. 7

we’ll create another agent, a “Referee” who can make sure the Players are ready to start and who
will decide that the game is over. In addition, because we’re doing an example, we want to see how
the game has progressed. That means we need an agent to keep track of the game’s history. We’ll
call this agent the Scorekeeper.

At this point it seems like we have five agents:

1. An array of three Players (who are called “variables” in the text)

2. A Referee who starts the game and ensures it finishes in accordance with the rules

3. A Scorekeeper who records the moves of each play as the game progresses and writes out
these moves so we can see the history of play

For now, we’ll assume these five agents are sufficient.

3.2 Agent Properties

Even at this early point in designing the game, we can see some of the attributes the agents
will need in order to carry out the game.

As a precursor, we note that the text assigns names to the possible frequencies the Players
can use for transmitting: Red, Green, and Blue. We’ll call these ‘Possible Choices’. We’ll represent
these choices as an Ada enumerated type (meaning that the language assigns names to what is
essentially an index).

Of course, each Player can start with a transmitter for one frequency, two frequencies, or
three frequencies. As the Pruning algorithm proceeds, of course, the possible selections decrease.
In the event that two Players have incompatible demands for a transmitting frequency, it’s even
possible that a Player will have no possible choices. This freedom within the constraint of
having only three frequencies available suggests that we represent a Player’s possible selection of
frequencies as an array of Boolean values, where the index of the array is chosen from the possible
frequencies. If the value for a chosen frequency is ‘False’, then that selection is not available to the
Player. If it is ‘True’, then that selection is available.

Next, we note that for the game to work, each Player has to communicate with the other
Players. If we think of the Players as coming in an array of three, then we need to provide each
Player with a list of the other available Players with whom to communicate. As play proceeds, each
Player simply goes down his own list of who to communicate with next, obtaining the selection of
frequencies available to each other player, in turn.

Listing 1 shows the types that belong to each Player. We have assigned a maximum number
of players and set it equal to three, since there are only three frequencies (or colors) assigned in the
text.

type Possible_Choices is (Red, Green, Blue);

type Choice_Selection is array (Red .. Blue) of Boolean;
--
Max_No_Of_Players : constant natural

:= 3;

type Player_Communications is array (1 .. Max_No_Of_Players - 1) of natural;

Listing 1. Types for Players.

At this point, we don’t have a clear picture as to whether the Referee or the Scorekeeper
have any particular attributes associated with them.

4. CREATING USE CASE SCENARIOS AND USE CASES

Use case scenarios are “stories” that describe the interaction between various entities in
the simulation. Use cases are more formalized descriptions of these stories. What we’re after is

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 8 Game 01: Domain Pruning by Revision Section 4

capturing the kinds of interactions we expect in the game, and then moving the description toward
a design that leads to computer code.

It sounds like there are three phases in the game:

• Play, in which each Player contacts the other two and may prune his own frequencies if
those frequencies would interfere with the others

• Writing Out the History, in which the Scorekeeper writes out the record of play

• Initializing Each Agent, probably based on input from outside the simulation

Of course, this description doesn’t place them in proper order. However, the necessary reordering
is quite simple. For now, let us look at them in the order presented.

4.1 Play

The text doesn’t give explicit instructions about how play proceeds. We just know that each
Player needs to get the frequency selections available to each of the other Players, compare its
selection, and revise its own selection if the other Player has an overlapping selection.

4.1.1 The pruning procedure

Listing 2 provides an appropriate procedure that accepts the selections from a given Player
and the selections from another Player and prunes the given Player’s selections for consistency.
The procedure returns the pruned selections. It also returns a score indicating either ‘No Change’
(meaning no pruning was necessary), ’Pruned’, or ‘Empty Selection’, meaning that there was no
consistent possibility between the given Player and the other. Listing 2 shows an Ada instantiation
of this procedure.

This listing starts with an Ada enumerated type that shows the possible result of the
procedure.

The procedure interface specification shows four variables:

• This Player Selection, an input variable from the Player checking for consistency

• Other Player Selection, an input variable from the Player whose selections will govern the
consistency check

• Revised Selection, an output variable that contains the appropriate revisions

• Result, an output variable that summarizes the nature of the change

The procedure has two parts. The first part determines if This Player has overlapping
selections with the Other Player. The second part prunes the selections for This Player if that is
prudent. Based on the description in the text, prudent pruning requires checking for the number
of selections each Player in the comparison has.

Obviously, at the end of the first part, the procedure knows how many selections each Player
has, as well as how many overlaps there are. It also knows which of the possible choices do, in fact,
overlap.

In the second part, there is clearly no need to prune This Player’s selection if there isn’t any
overlap. However, if there is some overlap, the procedure needs to see if it is prudent to prune that
selection.

There are three checks for prudence:

1. If This Player has more choices than the other player, then there’s no problem in removing
the overlaps. This Player will still have at least one selection. The Result will clarly be a
Pruneed selection for This Player.

2. If This Player and the Other Player Selection both have one selection – and if they overlap,
then the selection choices cannot be consistent. The Result has to be an Empty Selection.

3. If neither of these choices are true, then it’s imprudent to do anything. The Result is No Change.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Section 4 Game 01: Domain Pruning by Revision p. 9

type Consistency_Result_Type is (No_Change, Pruned, Empty_Selection);
--
procedure Prune_For_Consistency(This_Player_Selection : in Choice_Selection;

Other_Player_Selection : in Choice_Selection;

Revised_Selection : out Choice_Selection;

Result : out Consistency_Result_Type)

is
Overlap : array (Red .. Blue) of Boolean;

Number_Of_Overlaps : natural;

Number_Of_This_Player_Selections : natural;

Number_Of_Other_Player_Selections : natural;

begin
--
-- Determine Original State of Agreement Between This Player and the Other One
--
Number_Of_Overlaps := 0;

Number_Of_This_Player_Selections := 0;

Number_Of_Other_Player_Selections := 0;

Overlap := (Red => False, Green => False, Blue => False);

for Possible_Choices in Red .. Blue loop

if This_Player_Selection(Possible_Choices) then

Number_Of_This_Player_Selections := Number_Of_This_Player_Selections + 1;

end if;

if Other_Player_Selection(Possible_Choices) then

Number_Of_Other_Player_Selections := Number_Of_Other_Player_Selections + 1;

end if;

if This_Player_Selection(Possible_Choices)

and Other_Player_Selection(Possible_Choices) then

Overlap(Possible_Choices) := True;

Number_Of_Overlaps := Number_Of_Overlaps + 1;

end if;
end loop;
--
-- Prune Selections if Prudent
--
if Number_Of_Overlaps = 0 then

--
-- No Need to Remove Selections For This Player
--
Revised_Selection := This_Player_Selection;

Result := No_Change;

else
if Number_Of_This_Player_Selections > Number_Of_Other_Player_Selections then

--
-- Prudent Removal of Overlapped Selections

-- The Other Player has fewer selections than This Player does. Thus,

-- This Player will still have some selections after removing overlaps.

-- This section does not drop the number of selections in the Revised

-- Selection below 1.
--
-- Remove overlapped slections from This_Players selections
--
Revised_Selection := This_Player_Selection;

for Possible_Choices in Red .. Blue loop

if Overlap(Possible_Choices) then

Revised_Selection(Possible_Choices) := False;
Result := Pruned;

end if;
end loop;

Listing 2. Prune for Consistency Procedure.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 10 Game 01: Domain Pruning by Revision Section 4

elsif Number_Of_This_Player_Selections = 1 and Number_Of_Other_Player_Selections = 1 then

if Number_Of_Overlaps = 1 then
--
-- Make This Player Selections be EMPTY
--
Revised_Selection := (Red .. Blue => False);
Result := Empty_Selection;

end if;
else

--
-- No Need to Remove Selections For This Player
--
Revised_Selection := This_Player_Selection;

Result := No_Change;

end if;
end if;

end Prune_For_Consistency;

Listing 2 (cont’d.). Prune for Consistency Procedure.

4.1.2 Procedural rules for play

The main text provides few (or no) procedural rules for how play should proceed.

We do know that we would like the Scorekeepeer to keep track of each pruning attempt
and its results. We could write that record out to a file as each result comes in, or we could let the
Scorekeeper accumulate the results for each attempt and then write the whole record of the game
out at the end. It seems reasonable to only open up the results file at the end, particularly since the
game is likely to be very short.

This approach still means that at the end of each pruning attempt, the Player being pruned
will need to send the Scorekeeper a record that contains such items as the original selection of
frequencies for the Player, the current selection of frequencies for the Other Player, the pruned
selection, and the result (which is like a score for the play). Listing 3 shows such a record type.

type Transaction_Type is record

Round : natural;
Player_ID : natural;

Other_Player_ID : natural;

Original_Selection : Choice_Selection;

Other_Player_Selection : Choice_Selection;

Revised_Selection : Choice_Selection;
Result : Consistency_Result_Type;

end record;

Listing 3. Transaction Type passed from Player to Scorekeeper after each call to Prune for Consistency.

The procedure Revise on p. 4 of the main text does not specify a particular order in which
players should check for pruning. It also doesn’t contain an agent like the Scorekeeper who is
responsible for recording the outcome. It doesn’t include the agent we’ve called the Referee, who
is presumably responsible for starting play and terminating it.

Thus, it is up to the author of these exercises to invent the communication design for the
plays. If we think of games with humans, we might think of dividing up the game into Plays,
during which each Player prunes his frequency selection after interacting with a single Other
Player. This would mean that the Scorekeeper would get three Plays in a single group. If we
don’t allow anymore checking until each Player has provided a score, then we can keep the game
fairly well-organized.

If there is a second group of three Plays, in which each Player prunes his frequency
selections with the Player he didn’t check with the first time, then we can call the pair of three
plays a Round. At the end of a Round, the Scorekeeper can check in with the Referee and give him

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Section 4 Game 01: Domain Pruning by Revision p. 11

(or her) the score for the Round. If the score is Pruned, meaning that at least one player pruned his
selection, then the Referee can signal to the Scorekeeper to start another Round. On the other hand,
if at least one of the Players has had a pruning with the Result Empty Selection or No Change, then play
should terminate.

Figure 1 provides a UML Sychronization Diagram for the Plays within a Round. Play starts
with the Referee, who sends a message to the Scorekeeper to Start the Round. The Scorekeeper
synchronizes the interaction between the Players and collects the score at the end of each Player’s
call to the Pruning procedure. Note that this figure only shows the interaction in which Player 1
requests and receives the frequency selection of Player 2. During the actual computation, Player 2
does the same with respect to Player 1 and Player 3 also requests the same information from
Player 1. The Scorekeeper does not specify the timing of these calls. As a result, the actual message
sequence seen by any particular Player may be different than it might seem from this figure. This
implementation factor means that the frequency selection of any particular Player may be pruned
at seemingly random times – and may have a different sequence of changes in different runs of the
program.

Figure 1 also does not show the second group of three prunings that completes the Round.
However, the key message at the end of the Round is the one that goes from the Scorekeeper to the
Referee passing the score for the Round to him. Thereafter, the Referee decides whether the game
is over (because the score has no prunings or has discovered an inconsistent selection between two
of the Players) or not. If the game is not over, the Referee sends another Start New Round message to
the Scorekeeper to repeat the same pattern of activity in a new Round.

From the standpoint of actually coding a simulation of this algorithm, the Synchronization
Diagram in fig. 1 is a very helpful design artifact because it identifies the Entry points for each
task. For example, the first message that goes from the Referee to the Scorekeeper needs an Entry
in the Scorekeeper task that will accept the call and provide the Scorekeeper with a new Round
value (meaning an incremented integer). The second (as well as the third and fourth) message is an
event for Player 1 (and then Player 2 and Player 3) that initiates the calls to the other Player tasks,
which each Player task follows with a call to the Prune procedure. After Player 1 has completed
the Prune call, it sends the total Transaction message to the Scorekeeper, who duly records it in an
array. Players 2 and 3 perform the equivalent actions.

After each Player has sent the score to the Scorekeeper, that Player goes into a waiting state
until it receives a new Start New Play message from the Scorekeeper. The Player awakens from
that waiting state only after receiving that message.

Figure 2 shows a statechart description of the various states and transitions a Player can
have. For those not familiar with these diagrams, the intial state of this agent is in the unadorned
black circle. That’s where you start tracing how the Player’s state evolves.

The Player moves from its initial state by accepting input (from the Referee) based on the
input text file. That interaction provides the initial frequency selection and the list of other Players
to contact. After that information is digested, the Player is initialized and moves into a state in
which it can participate in playing the game.

The main state of each Player consists of two substates: Waiting and Playing. After
Initializing, the Player enters the Waiting substate until the Scorekeeper sends it a Start Play signal.
As the diagram shows, after the Player enters the Playing substate, it sends a signal to another Player
to obtain that other Player’s state. After pruning its own selection, the Player sends the score to the
Provide Score entry of the Scorekeeper and makes a transition back to the Waiting substate.

We note that the Provide Selection state and the Terminating states are separate from the
Initializing and the Participate In Play state. We’ll deal with initialization in a bit. There really
isn’t much for a Player to do when it’s terminating.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 12 Game 01: Domain Pruning by Revision Section 4

Figure 1. Synchronization Diagram for Proposed Play Procedure in a Single
Round Referee starts a round of play by contacting the Scorekeeper, who then
signals each Player to start a single call to the Prune for Consistency procedure. This
figure shows only one such call; in the program, all three Players have their own
calls. The Scorekeeper receives the results from each of the three Players before
sending a new message to each Player to contact the Player not previously checked
for consistency. After each Player has sent the additional score to the Scorekeeper,
the latter agent provides a score for the Round to the Referee. The Referee considers
whether the game is over or not.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Section 4 Game 01: Domain Pruning by Revision p. 13

Figure 2. Player State Chart This state chart shows the various internal states
of a Player. When play starts, the Player is not Initialized. After Initialization occurs,
there is a transition to a Waiting state. When the Player receives the Start Play

signal from the Scorekeeper, the Player makes a transition to a Playing state. In
this state, the Player asks another Player for its selection of frequencies. The other
Player makes a transition to the state in which it provides that selection. When
the selection returns, the Player prunes its selection and then returns the score to
the Scorekeeper. When the game is ready to end, the Player receives a Game Done

signal from the Referee and transitions to a Prepare To Terminate state, after which it
terminates.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 14 Game 01: Domain Pruning by Revision Section 4

4.2 Writing Out the History

When we think of a game history, one part is contained in the array of transitions that the
Scorekeeper maintains. Another part of the history is a record of the events that cause each agent
to change state. In the program we deal with these separately.

4.2.1 Play history

In a sequential program, we could count on lines of text being output in the order in which
they’re called from the single sequence of control. In a concurrent program, we can’t count on that
sequencing. The safer approach is to open the file, write all of the output, and then close the file.

As a result, we have the Scorekeeper accumulate all of the scores in an in-memory array
while the Players are still playing. Once the Referee decides the game has ended, then it’s
safe to have the Referee call the Scorekeeper to write out the history of the game as part of the
Scorekeeper’s preparation to terminate. When the Scorekeeper finishes with the writing, this agent
can send a message back to the Referee that the Scorekeeper is ready to terminate.

In a bit more detail, if the Scorekeeper maintains the number of score transactions that it
has received previously, it can simply increment that number by one when a new one arrives and
tuck the new arrival into the transaction array at the new number. When the time comes to write
the history out to a file, the Scorekeeper can loop through the array from 1 to the last number of
transactions, writing each transaction out to the file.

Figure 3. Results Tabulation for Game With Initialization Corresponding to
a Setup Similar to that Fig. 1.4 (a) of Shoham and Layton-Brown This table
shows the history of a game whose initial conditions has Player 1 with red, Player 2
with red and green, and Player 3 with red, green, and blue.

Figure 3 shows the output from this writing, using a spreadsheet to help format the text
file from a single run. At the top of the output, there is a brief note on the source of the output,
followed by a line with the total number of transactions in the game. The remainder of the output
is a tabulation of the transactions. The leftmost column contains the round number. In this case,
there are only two rounds. We also recall that each round for this game will contain six individual
plays, one for each Player. The second column from the left is the transaction, which is also the
array index within the Scorekeeper.

The central part of the table has the frequency selections for the Player and for the other
Player whose selections create the pruning conditions. We can see the original selections of the
pruning Player, followed by the selections of the other Player. The four columns on the right
contain the pruned selections of the original player and the result value for the pruning process. To
visualize the sets of three plays, we have inserted a blank row in the spreadsheet output.

The game’s initial condition is very similar to the one in fig. 1.4 (a) of the main text – except
that we’ve switched green and blue in the initial conditions. From the first results row, we can

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Section 4 Game 01: Domain Pruning by Revision p. 15

see that the pruning process does not change the first Player when it checks with the frequency
selection of Player 2. On the other hand, we can see that the pruning process removes the red
frequency from the second and third player’s selections when they check on the selections of Player
1. Note that at the end of the first round of play (with all six possible interactions between Players)
there is a unique selection for each Player.

In the second round, we find that there are no prunings. The frequency selection of each
Player is stable and unchanging when compared with the frequency selection for each of the other
players. As a result, the referee terminates the game.

4.2.2 Event history

As part of checking on how the program is proceeding through its activities, the program-
mer can embed “PRINT” statements throughout the souce code. In a sequential program, this is
one method of debugging. The output allows the user to check on numerical values as well as the
proper sequencing of statements. This is not so straightforward for a concurrent (or multi-threaded)
program.

Listing 4 shows a text file created by statements that print notes that identify the state of
the agents at various points in the computation. The first line identifies the executable, together
with the input file name and the output file name. The second and third lines show a verification
of these names output from the main program, which is named Game01. The fourth line of this
listing is likely to be surprising: it suggests that the main program has ended before any of the
other agents has even started to notify output of anything they’re doing. Of course, that just means
that the main program has reached the end of the items that it directly controls. It actually waits
until the other agents have terminated before terminating itself.

After the game had produced the text listing, we augmented it slighly by adding four lines
that help distinguish segments of activities. Segment 1 deals with initialization of each agent. The
Scorekeeper doesn’t have much to record. However, each player has to receive its list of other
agents and its initial selection of frequencies. At the end of this segment of play, the listing shows
that the Referee had received a notice that each of the other agents were ready to play.

Segment 2 of play contains the activities and events in round 1. When the Referee sends out
the message to the Scorekeeper that play should begin for round 1, the Scorekeeper provides a text
line to standard output noting that the message has been received. The bulk of this segment shows
the interaction between the Scorekeeper and the three Players, with the Player messages noting the
index of the other Player with whom they are interacting. At the end of the segment, we see that
score that the Scorekeeper has passed to the Referee.

Segment 3 is essentially the same as segment 2, except that none of the Players has to change
their selection.

Segment 4 has a more interesting output. We recall that the Scorekeeper is charged with
creating an output file before it can terminate. The fourth line of segment 4’s listing shows that
standard output has started to output a message from Player 1’s termination – except that the
Scorekeeper finishes the output file and then interrupts the Referee’s output with a message that the
Scorekeeper is Prepared to Terminate. Interruptions are one of the difficulties (or perhaps the major
difficulty) in understanding how a concurrent program is proceeding. Listing 4 does not contain a
mistake – but the output may be misleading. We comment in the concluding section of this chapter
on ways of overcoming this difficulty.

4.3 Initializing the Game

The Referee has the responsibility for reading in the values each agent needs to have to
operate during the game. Listing 5 shows the text file we have used for this purpose.

While a number of formats could have been used, it seemed sensible to keep the input
readable by humans, while still avoiding the programming complexity of XML. From the author’s
point of view, this is intended to encapsulate a certain amount of common sense about how easy

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 16 Game 01: Domain Pruning by Revision Section 4

Game01.exe Game01_Input.txt Game01_Output.txt

Input_File_Name : Game01_Input.txt

Output_File_Name : Game01_Output.txt

Main procedure is done with Game01

-- [Segment 1: Agent initialization] ---

Scorekeeper received Output_File_Name : Game01_Output.txt

From Player 1

Permission to Contact Player (1) 2 (2) 3

Initial Color Choices Red T Green F Blue F
From Player 2

Permission to Contact Player (1) 1 (2) 3

Initial Color Choices Red T Green T Blue F
From Player 3

Permission to Contact Player (1) 1 (2) 2

Initial Color Choices Red T Green T Blue T
Referee received note that Scorekeeper with ID 0 is ready to play

Referee received note that Player with ID 1 is ready to play

Referee received note that Player with ID 2 is ready to play

Referee received note that Player with ID 3 is ready to play

-- [Segment 2: Round 1 of play] --

Referee has received notification that all players are ready

Start Round 1
Scorekeeper Ready to Start Round 1

Player 1 starting play with Allowed_Players_For_Comm(Other_Player_Index) 2

Player 2 starting play with Allowed_Players_For_Comm(Other_Player_Index) 1

Player 3 starting play with Allowed_Players_For_Comm(Other_Player_Index) 1

Scorekeeper Play Recorded for Received_Player_Index 1

Scorekeeper Play Recorded for Received_Player_Index 2

Scorekeeper Play Recorded for Received_Player_Index 3

Player 1 starting play with Allowed_Players_For_Comm(Other_Player_Index) 3

Player 2 starting play with Allowed_Players_For_Comm(Other_Player_Index) 3

Player 3 starting play with Allowed_Players_For_Comm(Other_Player_Index) 2

Scorekeeper Play Recorded for Received_Player_Index 1

Scorekeeper Play Recorded for Received_Player_Index 2

Scorekeeper Play Recorded for Received_Player_Index 3

At end of Round 1
Referee received SCORE : Pruned

-- [Segment 3: Round 2 of play] --

Scorekeeper Ready to Start Round 2

Player 1 starting play with Allowed_Players_For_Comm(Other_Player_Index) 2

Player 2 starting play with Allowed_Players_For_Comm(Other_Player_Index) 1

Player 3 starting play with Allowed_Players_For_Comm(Other_Player_Index) 1

Scorekeeper Play Recorded for Received_Player_Index 1

Scorekeeper Play Recorded for Received_Player_Index 2

Scorekeeper Play Recorded for Received_Player_Index 3

Player 1 starting play with Allowed_Players_For_Comm(Other_Player_Index) 3

Player 2 starting play with Allowed_Players_For_Comm(Other_Player_Index) 3

Player 3 starting play with Allowed_Players_For_Comm(Other_Player_Index) 2

Scorekeeper Play Recorded for Received_Player_Index 1

Scorekeeper Play Recorded for Received_Player_Index 2

Scorekeeper Play Recorded for Received_Player_Index 3

At end of Round 2
Referee received SCORE : No Change

-- [Segment 4: Cleanup and Termination] --

Player(1) is Prepared to Terminate

Player(2) is Prepared to Terminate

Player(3) is Prepared to Terminate

Referee received note that PlayerScorekeeper is Prepared to Terminate

1 is terminating

Referee received note that Player 2 is terminating

Referee received note that Player 3 is terminating

Referee received note that Scorekeeper is terminating

Listing 4. A listing of most of the events produced by running the program.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

Section 5 Game 01: Domain Pruning by Revision p. 17

it is to use the program and how easy it should be to modify the input. While an XML parser is
available for Ada, the code library that goes with this parser is (much) bigger than the souce code
of the program to solve the problem. Using XML wouldn’t add anything to the solution of the
problem by a concurrent program, which, after all, is the intent of this exercise. Readers wanting
an introduction to XML should look in any bookstore that has a decent computer book section.

Number of Agents

3
Agent 1

Communicates with Agents 2 3

Number of Colors 1
Colors are R
Agent 2

Communicates with Agents 1 3

Number of Colors 2
Colors are R G
Agent 3

Communicates with Agents 1 2

Number of Colors 3
Colors are R G B

Listing 5. Text file used for input to set up the game.

The input text file is primarily dealing with initializing the attributes of the Player agents.
Because concurrency may cause indeterminancy in the order in which the agents act, this input
allows a user to change that order for each agent. We encourage such experimentation in the
exercises that follow.

We also allow each agent to start with a different selection of frequencies. Again, the
exercises encourage experimentation on these selections.

4.4 Terminating the Game

At this point, game termination has been almost entirely covered by the material leading to
Listing 3.

5. REVIEWING THE GAME

Having worked our way through a complete example of a multiagent program, we can see
some of the changes induced by this non-sequential paradigm.

First, visualizing the agents as people who interact by having a purposeful “conversation”
seems very helpful in creating a design. There are then three design elements that need to be filled
in:

1. Identifying the attributes that carry the decision-making capability for each agent

2. Formalizing the “speech pattern” that the agents carry on as the game or simulation
progresses

3. Formalizing the states and transitions that each agent has

Second, translating the agents into code becomes relatively straightforward. Each agent
becomes an Ada task. In the second design element, we associate the message passing interactions
of the “conversation” between agents as Ada task entry points that use a rendezvous to pass
message contents between agents. These conversations may start design informally, using use
case scenarios or use cases. For clarification and documentation, UML synchronization diagrams
are quite helpful.

Third, UML state charts can provide an additional design clarification for labelling the task
entry point logic. Ada accept interfaces can use the state charts to design guards that control when
a state is allowed to accept a rendezvous.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

p. 18 Game 01: Domain Pruning by Revision Section 7

Fourth, having a debugging tool that can follow messages from task to task (or agent
to agent) is likely to be essential in obtaining a properly working program that invokes
concurrent, multi-threaded programming. Printing out “debugging” messages is not adequate
for understanding what each agent may be experiencing in the course of running the program.

6. EXERCISES

EXERCISE 1

Create a UML use case scenario for a round of play and place it in the UML documentation
Web site for this game, based on the partially filled in one that’s provided with this package.
This means filling in the Player, Referee, and Scorekeeper attributes needed for the use case,
as well as filling in the procedures and functions.

EXERCISE 2

Run the program with all of the input cases provided. Verify that the Ada program properly
records the intermediate states and derives the proper end state for the algorithm in each of
these cases.

EXERCISE 3

Modify the input text file for the standard game such that the order in which each Player
queries the other Players is different than the original test case. Verify that the solution is
the same.

EXERCISE 4

Modify the input text file to cover all four cases shown in figure 1.4 of the main text. Verify
that the solutions you obtain are sensible.

7. REFERENCES

Shoham, Y. and Leyton-Brown, K., 2009: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical
Foundations, Cambridge, Cambridge, UK, 483 pp.

Copyright 2009 Bruce R. Barkstrom. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

